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Abstract 

Noise sources consisting of an electromagnetic horn 
aimed at an absorbing material have been in use for 
many years. A satisfactory derivation of the noise 
temperature for such a configuration has been 
missing, however, preventing the use of this horn- 
type noise source as a primary reference standard. 
The derivation described in this paper models the 
various noise emitters within the source well enough 
to provide an accurate 'estimate of the noise tem- 
perature and a complete error analysis. 

1. Introduction 

For the past twenty years the Electromagnetic Fields 
Division of the U.S. National Bureau of Standards 
has built a number of coaxial and waveguide noise 
sources [ 1 - 31 consisting of single-moded uniform 
transmission lines terminated with reflectionless 
loads. The accuracy of their calculated noise tem- 
peratures is typically 1%, and tends to degrade as 
the operating frequency increases. The basic design 
is illustrated in Fig. 1 where the termination and a 
portion of the transmission line are immersed in a 
thermal reservoir at temperature T,, with the re- 
maining portion of the line leading to the output 
connector at room temperature G. The temperature 
distribution T, of the line is also illustrated, where 
the room-temperature portion of the line has a 
length 1. Radiation from the termination and the 
dissipative losses in the line result in the noise tem- 
perature [4] 
G = T , + A T  (1) 

where, for the simple distribution shown, 

A T *  ( 3 ~ l )  (&-T,) ( 2 )  
and the attenutation coefficient a refers to the line at 
temperature &. The equations indicate that only the 

portion of the line at contributes to the excess (in 
excess of thermal equilibrium conditions) noise tem- 
perature AT 

The largest source of error in calculating the 
noise temperature by (1) is the attenutation 2 0 1  
which is usually estimated with an uncertainty vary- 
ing from 10% to 20%. With this large an uncertainty, 
it is necessary to keep the attenuation small (to 
maintain the uncertainty in T,, less than 1%) im- 
plying either a small attenuation coefficient a, a 
short transition length I, or both. In the microwave 
frequency range and below, the attenuation can be 
kept down with relatively simple engineering 
designs, but this becomes more of a problem as the 
frequency increases into the millimeter-wave range. 
To circumvent the engineering difficulties the trans- 
mission-line type of noise standard was abandoned 
in favor of a design [ 5 ]  incorporating a millimeter- 
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Fig. 1. A transmission-line type noise standard 
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wave horn antenna “looking” at an absorber of 
known temperature. The resulting antenna noise 
temperature [4] is close to the measured temperature 
T, of the absorber, with additional noise contribu- 
tions from the dissipative antenna losses and from 
the antenna side and back lobes. This type of noise 
source is not new, but its use as a primary reference 
standard required the successful resolution of two 
previously unresolved problems: the need of a use- 
ful expression for the noise efficiency (defined later) 
of the antenna with sources in its radiating near 
field [6 ] ;  and an estimate of the error caused by 
near-field excess radiation entering the side and 
back lobes of the antenna. 

Figure2 shows a schematic diagram of the 
cryogenic, millimeter-wave noise standard [5] con- 
structed to overcome the engineering difficulties just 
mentioned. It consists of an electromagnetic horn at 
room temperature & with its waveguide lead pro- 
truding from the enclosure whose conducting walls 
vary in temperature from & near the horn to the 
absorber temperature T, (77 K). The noise tempera- 
ture T, of the standard can be expressed as the sum 
of four terms: 

T,= Tm + A %  +AT +AT.  (3) 

The first term, equal in magnitude to the absorber 
temperaure, is the noise temperature of the standard 
when the walls and horn are at the absorber tem- 
perature, and includes emission from the entire 
cavity (horn, conducting walls and absorber). The 
second term is the excess noise temperature con- 
tribution from the horn due to its elevated tempera- 
ture (& > T,), and is calculated as though the horn 
were in a reflectionless cavity at the absorber tem- 
perature. The third term is the excess noise from the 
conducting walls, neglecting multiple reflections be- 
tween the walls and the horn. The last excess noise 
temperature is an interaction term which includes 
the effects on the horn and wall contributions from 
multiple reflections between the horn and walls, and 
the error due to assuming that the horn is within a 
reflectionless cavity while deriving the second term. 
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Fig. 2. A horn-type noise standard 

These three excess noise temperatures vanish if the 
horn and walls are at the absorber temperature, or if 
the horn and walls are infinitely conducting. The 
purpose in writing the noise temperature in the 
form of (3) is twofold: for a horn of moderate gain 
the last two terms are small and can be discarded, 
requiring only an upper-bound estimate of their 
magnitudes; and an expression for the second term 
can be derived from rigorous, thermodynamical 
arguments even with the cavity in the radiating near 
field of the antenna. This second term is expressed 
in the form 

(4) 

where c1 is the noise efficiency, and accounts for 
both absorption and emission by dissipative loss in 
the horn structure. The same expression holds for a 
lossy, two-port, microwave junction [7], where the 
noise efficiency reduces to an available power ratio, 
and leads to the approximation in (2). 

2. Antenna Noise Emciency 

The following antenna-noise efficiency derivation 
employs the plane-wave scattering matrix theory of 
antennas [8] and is in two steps. First, a spectral- 
density function for the cavity radiation is found by 
placing an arbitrary, lossless and reciprocal antenna 
in the cavity, and applying the scond law of thermo- 
dynamics. Then, the lossless antenna is replaced by a 
lossy, possibly different, antenna and the density 
function and the second law of thermodynamics are 
used again to calculate the noise efficiency for the 
lossy antenna. 

Figure 3 shows a lossless antenna terminated by 
a reflectionless load in thermal equilibrium with the 
cavity via radiation through the antenna, leaving the 
load and cavity at the same temperature T,. The 
cavity walls are infinite in extent, and lie entirely to 
the left or right of the planes denoted by “q = 1” or 
“q = 2”. du, (m, K, r) is a differential amplitude 
function for the radiation originating at position r, 
with q denoting the front and back hemispheres sur- 
rounding the antenna. m is the polarization index of 
the corresponding wave incident on the antenna, and 
K is the transverse (to the z-direction) part of the 
propagation vector k. The wave amplitude of the 
field in the antenna waveguide lead produced by 
du, is represented by dbo, and So0 is the antenna 
reflection coefficient. Since there are no multiple 
reflections between the antenna and the cavity 
walls [8] 

( 5 )  dbo =$ Soq (m, K) da, (m, K, r) dK 
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Fig. 3. An antenna and waveguide termination in a reflection- 
less, isothermal cavity 

where the symbol 

$ = C E  (6) 
q K m  

is used for convenience, and where the integral is 
two-dimensional, being performed over the product 

for the mode propagating in the waveguide, Com- 

(9) 
bining (7) and (8) leads to 

0 0  = $8’ so, (m,K) stqr (m’, K’) w, d~ d ~ ’  

where 

w, = j j(da, (m, K ,  r) da$ (m’, K’,  r ‘ ) )  . 

‘O 

1 - I so0 l 2  

(10) 

The power spectral density w of the load at- 
2 n  2 n  

tached to the antenna is [9] 

0 = x T ,  (11) 
where x is Boltzmann’s constant, and T, is the load 
temperature. Since the load and cavity are in 
thermal equilibrium, the second law of thermo- 
dynamics [lo] insures that 

w 0 = 0 .  (12) 
Combining (9), (1 1) and (12) leads to 

(13) 
= x T, . $ $’ so, (m, K )  s!,! (m’, K ’ )  oc d~ 1 - ’ s o 0  l *  

Since the antenna is lossless and reciprocal [8] 

where r m ( K )  is the wave admittance for the in- 
cident wave with polarization index m and trans- 
verse wave number K. ti,,, and & , ,  are Kronecker 
delta functions, and 6 ( K - K ’ )  is a Dirac delta func- 
tion. Multiplying (14) by x T, and combining it with 
(13) leads to 

1 

dk,ydky symbolized by dK. The integral limits are 
restricted to the region in k-space where K<k, 
implying that there is no evanescent-mode coupling 
between the antenna and cavity. SO, is the receiving 
characteristic of the antenna. The total wave ampli- 
tude from all of the sources in the cavity walls is 

bo= Sdbo=$So,(m,K) {da,(m,K,r)dK (7) 
4 n  2 n  

where the integral is over the front ( q = l )  or back 
(q = 2) hemisphere. 

The spectral density 00 of the available power 
corresponding to bo for a unit bandwidth is 

where the bracket symbolizes an ensemble average, 
accounting for the fact that bo is a stochastic vari- 
able [9], and where the asterisk stands for the com- 
plex conjugate. vo is the characteristic admittance 

Since (15) must hold for any lossless, reciprocal 
antenna, and since w, is independent of the antenna 
parameters, the quantity in the bracket must vanish. 
This yields the required spectral function for the 
cavity radiation, 

The lossless antenna is now replaced by a lossy 
antenna, the resulting noise temperature being 
equal to the power spectral density (divided by 
Boltzmann’s constant) of the total available noise 
power at the antenna waveguide flange. Since the 
total power is the sum of the independent noise 
powers generated by the cavity and the dissipative 
losses in the antenna, the spectral density is the sum 
of the separate spectral densities of the antenna and 
cavity. The spectral density w’ for the cavity radia- 
tion appearing at the waveguide flange of the 
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antenna can be obtained by inserting (16) into (9) 
and taking the cavity temperature T, (since it is con- 
stant) out from under the integral sign. The result is 

“=xT,Ci (17) 
where the noise efficiency r turns out to be 

The second sum-integral symbol includes only the 
sum over q as the sum over m is absorbed into the 
“complete” antenna receiving characteristic shq [8]. 
Yo is the wave admittance of free space, and the 

primes in the equation signifv that the corresponding 
parameters belong to a lossy antenna. For the reci- 
procal antenna (1 8) reduces to the antenna radiation 
efficiency [ 81. 

It proves useful to rearrange (1 8) into 

SI = iloq (4 dx 
where 

and y is the z-component of the propagation vector 
k. The unprimed quantities refer to the lossless 
antenna which is an exact duplicate of the lossy 
antenna except for infinite conductivity. The an- 
tenna loss is now contained entirely in (20), and 

$ d r = l .  (22) 

70 ksoq ( K )  = r, Y Sqo(-K) , 

Since the antenna is reciprocal [8] 

(23) 
A similar expression holds for the lossy or primed 
quantities, and sq0 is the “complete” transmitting 
characteristic of the antenna. Equations (20) and 
(21) can now be expressed in terms of the trans- 
mitting characteristic 

and 

Equations (24) and (25) depend only upon the 
antenna structure, and apply just as well whether the 
noise sources in the cavity walls are in the radiating 
near field or the far field of the antenna. Therefore 

(24) and (25) may be evaluated in terms of the 
transmitted far field [8] leading to 

and 

YEq is the far-field pattern. P,, and 52, are the 
normalized power pattern and antenna solid angle 
respectively, and d52 is the differential solid angle 
referred to the antenna aperture. Combining (19), 
(26) and (27), 

where 6 and a, are the usual antenna angles, and 
where S,lo and the field pattern rE’(r)  contain the 
antenna loss. The integral is over the entire 4n solid 
angle surrounding the antenna, and the ratio in the 
integrand is the ratio of the field pattern with loss to 
the field pattern without loss. 

Equation (28) is the desired noise efficiency in a 
form that permits the components of the horn loss 
to be traced [5] from the waveguide lead of the horn, 
out through the flare and aperture, to the external 
surfaces of the structure. Furthermore, since most of 
the horn loss is generated in its waveguide’and 
throat areas, and since SI50 is very nearly equal to 
SOO, the right-hand side of (28) can be easily and 
accurately estimated [5]. 

3. Excess Cavity Noise 

The noise standard was constructed in such a way 
that multiple reflections between the horn aperture 
and the cavity walls can only take place between the 
aperture and the rear walls (see Fig. 2). Thus, for a 
horn with sufficient gain the excess noise tempera- 
ture A Z  due to the cavity walls can be estimated 
without including these reflections. Considering just 
the E-plane of the horn, Fig. 4 depicts a small 
radiating source of area dA in the absorber and its 
reflections generated by the conducting walls of the 
cavity, and resulting in the noise temperature dT,. 
For simplicity, the apparent positions of these 
images (the squares in the figure) are calculated 
assuming the horn to be missing from the cavity, an 
assumption that does not have a significant effect on 
the results. As seen from the H-edges of the horn 
(points 1 and 2) the more distant images look closer 
together, appearing to condense on the “condensa- 
tion line” shown. Since the magnetic source currents 
in the E-plane of the figure produce electric fields 
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Line I 
Fig. 4. A source 
plane of the horn 

and its images in the E- 

that are cross-polarized to the antenna and thus not 
received, only currents perpendicular to the figure 
need be considered and these can be easily account- 
ed for by summing their corresponding magnetic 
fields in the horn throat. To first order this sum 
takes the form [ 113 

The first term is the magnetic field at the throat that 
comes directly from the source, where HO is the 
source strength, ro is the radius from the throat to 
the source, and k is the free-space wavenumber. 
This is the only component that reaches the throat 
directly (the images must diffract around the- aper- 

ture edges at points 1 and 2 to reach throat) because 
only the absorber can be seen from the throat area. 
The second term is due to diffraction of the source 
into the throat by edge 1, where (1,O) is the diffrac- 
tion coefficient, and rl is the radius from the source 
to this edge. The source strength H I  (0) differs from 
HO since the angles at which the radiation is emitted 
from the surface area dA are different in the two 
cases. The third term has an interpretation similar 
to the second term. The two sums in the equation 
are the contributions from the images, where 
identification of the last three factors in each sum is 
evident from the previous discussion. The two fac- 
tors Z1,  and Zzl  are reflection coefficients that ac- 
count for the loss arising from the wall reflections 
that give rise to the images. 

The noise temperature resulting from the radia- 
tion of dA is calculated from 
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where C is a constant relating the throat field H to 
the TElo mode field in the waveguide lead of the 
horn, and where the second factor represents an 
ensemble average of the magnetic field times its 
complex conjugate. When (29) and (30) are com- 
bined, there emerges an equation of the form 

d K = C ’ T { }  dA (31) 
where C’ is another constant which includes C. The 
temperature T appears in the equation because the 
ensemble average is proportional to the temperature 
of dA. The proportionality “constant” is symbolized 
by the bracket and depends upon the temperature 
distribution of the metallic walls since the wall con- 
ductivity is a function of the temperature. Equation 
(31) equally well describes radiation from a source 
in the conducting walls of Fig. 4, the only difference 
being that the first term in (29) for the throat field is 
missing because the walls cannot be seen from the 
throat. 

The influence of radiation from a source in the 
conducting walls on the noise temperature relative 
to a source in the absorber is greater for the E-plane 
shown in Fig. 4 than for any other plane through the 
axis of the horn. Therefore, if (31) is used for de- 
scribing the radiation from other planes, the effect 
of the wall radiation on the noise temperature is 
over-emphasized, leading to an overestimate of the 
excess noise temperature AK. Since this term in (3) 
is to be discarded, and since a calculation similar to 
the preceding one in these other planes is prohibi- 
tively difficult, it is convenient and conservative to 
think of dA as representing the differential surface 
area of a cylindrical ring around the horn axis to 
account for these radiating sources in the conducting 
walls of the cavity. Equation (31) is then integrated 
to account for the total cavity radiation with the cor- 
responding noise temperature 

r, = C’jT{} dA. (32) 
Although this equation is too approximate to be 
used for calculating the noise temperature T,, it is 
adequate for obtaining an upper bound to the excess 
cavity noise. The constant C’ is calculated by noting 
that in thermal equilibrium (where the temperature 
of the walls and the horn are the same temperature 
Tm as the absorber) the noise temperature is equal to 
Tm. After evaluating C’ in this way, and subtracting 
T, from (32) to get the excess cavity noise, there 
results 

(33) 

where the “m” in the lower bracket indicates that it 
is to be calculated with the cavity walls at the ab- 
sorber temperature. When this ratio was evaluated 

[5 ]  by computer it yielded an upper-bound error of 
0.1% relative to the noise temperature calculated 
from the first two terms of (3). 

4. Multiple Reflections 

Multiple reflections taking place between the horn 
aperture and the rear cavity wall modify both the 
horn and the cavity-wall contributions to the noise 
temperature of the standard. The magnitude of the 
error due to changes in the horn-generated noise can 
be found by determining what portion of the stan- 
dards’s reflection coefficient is the result of rear-wall 
reflections. When this was done [ 5 ]  the error was 
found to be negligible. 

An upper bound to the wall-contribution error is 
estimated in a way similar to the calculation of the 
excess noise temperature in Section 3 by including 
images from the fields diffracted back into the rear 
of the cavity by the edges 1 and 2 in Fig. 4. By com- 
puter calculation the error from neglecting these 
first-order reflections was shown to be less than 
0.05% [ 5 ] .  Contributions from higher-order reflec- 
tions fall off rapidly in magnitude compared to this 
value. 

5. Conclusions 

The analysis presented in this paper forms the basis 
for estimating the noise temperature of a horn-type 

Table 1. Uncertainties in the WRlO (75 GHz- 110 GHz) 
noise standard 

Source of uncertainty Source Resulting 
uncertainty percentage 

uncertainty 
in 

1. Higher modes 
2. Multiple reflections between 

3. Elevated cavity-wall tempera- 

4. Uncertainty in T, 
5. Uncertainty in 
6. Uncertainties in E 

6.1. Neglecting losses beyond 

6.2. Using waveguide loss equation 
6.3. Dimensional uncertainties 
6.4. Uncertainties in dc resistivity 

6.5. Uncertainties due to surface 

horn and cavity 

ture 

aperture 

curve 

roughness 

- 
f 0.26 K 
k 2 K  

- 
- 
- 
f 0.0025 cm 
f 5% 

f 5% 

0 
+ O  
- 0.05 
+ O  
- 0.10 
f 0.34 * 0.02 

+ O  
- 0.01 
f 0.01 
k 0.06 
f 0.01 

f 0.06 

Total uncertainty (linear sum)’ + 0.5% 
- 0.7% 



133 

noise standard. Previously, justification for such a 
configuration was not available, restricting standard 
building to the transmission-line type of configura- 
tions shown in Fig. 1. The analysis indicates that as 
long as the horn has sufficient gain and is contained 
in a cavity with highly conducting side and rear 
walls, the errors discussed can be kept within toler- 
able limits. As a practical matter, the silicon carbide 
absorber in the actual cavity [5 ]  is broadband, so 
that one may use the same cryostat for other wave- 
guide bands, being careful to position the horn 
aperture a few free-space wavelengths or more away 
from the cavity walls and the absorber. 

A number of other errors not associated with the 
derivation just presented are also important, and 
attention is given to the design of the standard to 
keep these additional errors small. Table 1 indicates 
[ 5 ]  the relative sizes of the various uncertainties for 
the millimeter-wave noise standard constructed for 
the WRlO waveguide band. 
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